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A general framework is derived which leads to generic expressions of discrete dis-
persion relationships for inertia—gravity and Rossby waves, valid for every finite dif-
ference scheme and every type of grid. These relationships are used to investigate the
performance of fourth-order and sixth-order compact implicit schemes on Arakawa
grids A-E. It is shown that the use of compact schemes leads to very clear improve-
ment in approximating frequency and group velocity of inertia—gravity waves. On
the other hand, increasing the order of the schemes does not necessarily improve
the accuracy of the discrete dispersion relationship in the case of Rossby waves.
Globally, the fourth-order family is found to be a good compromise, which improves
significantly the quality of the approximation of the dispersion properties with regard
to conventional second-order centered schemg@ooo Academic Press

Key Wordsfinite difference approximations; inertia—gravity waves; Rossby waves;
oceanography.

1. INTRODUCTION

Numerical models of the ocean circulation have been very much improved these
15 years, particularly in terms of physics, realism of the applications, and computa
techniques. Numerous current models treat the full equations of physical oceanogr
(the so-called “primitive equations”) to simulate the dynamical behavior of the ocean
a basin scale (or even the global ocean) with a high resolution (typicaytb 1/10°
on the horizontal, with tens of vertical levels). The huge computational burden ma
it often necessary to run these models on massively parallel supercomputers via do
decomposition techniques.

In this context of rapid improvement, it is striking to note that very few significat
modifications occurred in the basic numerics of the models, since the large majority
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ocean general circulation models still use only simple second-order centered finite dif
ence schemes. However, numerous modern schemes exist that feature interesting proy
when compared to conventional schemes. Such is the case, for example, for the im|
schemes based on Hermitian formulas, which is an old idea (e.g., [4]) that became |
ular in the field of computational fluid dynamics only recently, mostly through the wo
of Lele [9], under the name afompact differencechemes. Note that, in the domain of
oceanography, Chu and Fan [3] applied a family of schemes based on such Herm
formulas (calleccombined compact differensehemes) to the simple stationary Stomme
model.

The aim of the present work is to investigate the potential interest of such higher or
schemes within the specific context of numerical ocean models. In this first part, we \
focus on the representation of inertia—gravity and Rossby waves, which play an impor
role in the setup of the ocean circulation. Following the studies of Arakawa and Lamb |
Wajsowicz [11], Fox-Rabinovitz [6], Adcroft [1], and Dukowicz [5], who evaluated the
performance of conventional second-order centered schemes in representing these
on different types of grids, we will derive a general framework allowing a systema
evaluation of the performance of finite difference schemes in this particular context.

This paper is organized as follows. We introduce in Section 2 the 1-D schemes studie
this paper and give some insight into their spectral properties. The 2-D schemes used i
rest ofthe paper are expressed in Section 3 as functions of the preceding 1-D schemes, fi
ferent types of grids. Then the application to the discretization of inertia—gravity (Sectior
and Rossby (Section 5) waves is discussed, and some conclusions are drawn in Secti

2. ONE-DIMENSIONAL SCHEMES

To build the 2-D schemes necessary for the discretization of the equations consider
this paper, only three 1-D schemes are necessary. Given the Vfaloka function f on a
regular 1-D grid(X; )ien, we will define:

e S: an interpolation scheme providing estimafes, » of the values off at the mid-
poiNntsXi 112 = (X + Xi+1)/2.

e S/»: a scheme providing estimateﬁﬁrl/2 of the first derivativef’ at pointsx; ;1 /».

e 5 ascheme providing estimatés of the first derivativef " at pointsx;.

In the present study, we decided to focus on schemes of practical interest in the cor
of oceanography and to limit ourselves to schemes using only gridpoints within one m
around the current gridpoint. This is what is done in most ocean models, in order to limit
problems of numerical diffusion and of deriving noncentered schemes near the bounda
It led us to the selection of three families of schemes.

The first one is composed of explicit second-order centered schemes (E2S), which ar
schemes conventionally used in ocean circulation models. The second family is base
fourth-order compact schemes (C4S), as presented for example in [9]. The third famil
composed of sixth-order compact schemes (C6S). Note that, to avoid the use of gridp
more than one mesh away from the current gridpoint, the scl&gnrethis third family
requires the simultaneous estimation of the first and the second derivatives (see [3] for 1
details on this particular scheme). These three families are listed in Table I. A thorot
comparison of the properties of the compact schemes with classical explicit higher ol
schemes can be found in [9].
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TABLE |
The Three Families of 1-D Schemes

Scheme
E2S
1
S) f|+1/2 = E(fl + f|+1)
f\ - f|
Sl/2 f|/+1/2 = +1d
fii—fia
S fr=""_ =
! 2d
C4s
1 1 2
S 5 fisgo + fiige + < fi+3/2 = é(fi + i)
1., ) ) 12 fia —
S1/2 ? f\—l/z + fi+1/2 + 55 22 f|+3/2 11 - d
3fi—fia
- f’ f/ + f’ =
Sl 4 i— 1+ i 4 |+1 2 2d
Cc6s
S if» + f +3f (f'+f' )+i(f' + fi2)
10 i-1/2 i+1/2 10 |+3/2— i i+1 20 i-1 i+2
9 , 9 63 fia— 6 17 fi,—fiy
S1/2 §2 fi—1/2 + fi+1/2 + 672 fi+3/2 = 672 d 672 3d
d 15
i+ (fI:rl + £l - (f|”+1 f’) = 16d —(fia—fisp)
S
f (f|/jrl f” 1) + (f|+1 \ ) = ?(fﬂrl - 2f\ + fi—l)

Note d is the grid spacing.

To quantify and compare the properties of these different 1-D schemes, we have calcu
theirtransfer function§TFs), which are summarized in Table II. We remind the reader th
the transfer functio of a schemeS is defined byS(€**) = T (k)é** and gives insight
into the spectral resolution &. These TFs are compared in Fig. 1 to the TF of the exa
interpolation and derivative operators, which clearly illustrates the better approximat
properties of C4S and C6S with regard to E2S.

We have also reported in Table lifist-order TFfor S, and §,. This functionR is
needed for the study of the approximation of Rossby waves (see Section 5) and is de
by S[(x — x0)€¥*](x0) = R(k)&* for anyxo.

asp

osr 25

o4f

as o 0?5 ‘; 15 2 25 3 35
kdpl
FIG. 1. Transfer functions of exact and approximate operators described in Table I Théft: E2S (A),
C4S (B), C6S (C) and exact interpolation (D). Right:for E2S (A), C4S (B), C6S (C)T,,, for E2S (D), C4S
(E), C6S (F), and exact derivation (G).
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TABLE Il

Zero-Order and First-Order Transfer Functions of the Three Families of 1-D Schemes
and of the Exact Operators

Scheme Transfer function(k) First-order transfer functioR(k)
Exact
Interpolation Tok) =1 Ry(k) =0
Derivation TKk) =ik Rk =1
E2S
kd id . kd
S To(k) = cosE Ro(k) = > sin >
2i . kd kd
Si2 Ti2(k) = q sin ) Ry (k) = COS?
s To(k) = IE sinkd R.(k) = coskd
C4s
4 cogkd/2) id 4sinkd/2)
Tok) = —— K= ————
S Y 3+ coskd Ro(k) 2 3+ coskd
_ 2i 12sinkd/2) 12 cogkd/2)
S T2 = 111 coskd R0 = 11+ coskd
i 3sinkd 3coskd
S k=573 1 coskd Ruk) = 2+ coskd
C6S
_ 15c08kd/2) + cos(3kd/2) _id 15sinkd/2) + 3sin3kd/2)
S Tolk) = 10+ 6 coskd Rok) = = 10+ 6coskd
5 Tua(k) = 2i 63sinkd/2) + T sin(3kd/2) Run(k) — 63 cogkd/2) + 17 cog3kd/2)
2 T 62+ 18 coskd v = 62+ 18 coskd
i 9(4+ coskd) sinkd —24+ 60 coskd + 9cos kd
S T = § 337 20 cosd + 2 cog kd Rk = 233 20cokd + 2c08kd

3. LINKS WITH TWO-DIMENSIONAL SCHEMES

Following the well-known Arakawa classification, we will consider the discretization ¢
the shallow water equations on grids of type A to E (Fig. 2), which differ in the locatic
of the discrete variablas, v, andh, whereu andv are the horizontal velocity components

uv uyv v
A B C
h,u,v h u h u
uyv uv v
u h uv h
D E
v h vVouv h uwv
u h u,v h

FIG. 2. Grids of type A to E, following Arakawa’s classification. Note that the grid spacirdyfier grids
A-D, andd+/2 for grid E, in order to have the same distaddeetween corresponding grid points.
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TABLE 1l
2-D Schemes as Combinations of 1-D Schemes for A to E Grids

A B C D E

So Id Id § o S S o S Id

Sy s Sf/z © Sg %x/z So Sg Sf/z
(or Sf/z o§o Sf)

S; SY Sf/z 0§ Sly/z Sf 0 Si//z
(or Sf/z o S))/ o &)

Note The superscripk or y indicates the direction in which the 1-D
scheme is applied.

andh is the displacement from a constant depthThe inertia—gravity and Rossby waves
equations will require the approximation of

e v andoh at au-point,
e u andayh at av-point, and
e 9yu anddyv at anh-point.

By symmetry, we can see that we need, for all grid types, three 2-D schemes:

e Sy to approximates at av-point (andv at au-point),
o S} to approximate,h at au-point (anddyu at anh-point), and
e S to approximatedyh at av-point (anddyv at anh-point).

These schemes can all be obtained by simple combinations of the preceding 1-D sch
S Si2, andS,, as indicated in Table I1l. Note that, for the D-grid, alternative combinatior
(added in parentheses) could also be considerefifandS,. However, they are exactly
equivalent for E2S and lead to slightly less compact calculations for C4S and C6S.

The TF of a 2-D scheme being defined &g V) = 7 (k, 1 & ®+Y) we can easily
derive from Table Il the expressions for the THs 7.”, andTy” of the 2-D schemes as
functions of To, Ty/2, and T, (Table 1V). We have also derived the expression7jrand
Ry, defined by

Sy ((y — Yo)€ (k”'y))(xo, Yo) = Ry (K, e Ka+yo)

j i V(Xo, Yo), (1)
S; ((y _ yo)el (kx+|y)) (Xo, YO) — R;(k, |)e|(k><0+|y0) }

as a function offy, Ry, T1/2, Rij2, T1, andRy. Ry andR; will be useful in Section 5.

TABLE IV
2-D Transfer Functions as Combinations of 1-D Transfer Functions for A to E Grids

A B C D E
Tok, 1) 1 1 To(K)To(l) To(K)To() 1
Tk, 1) Ta(k) T12(K) To() Ty2(K) T.(K)To() Ti/2(K)

7, K, D T.() To(K)Ty2(1) Ti2(h) To(K)Tu() Ty2()
Rk, 1) 0 T12(K)Ro(l) 0 TRy () 0
Ryk, 1 Ru() To(K) Ry (1) Ry2(1) To(K)Ry (1) Ry/2(1)
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4. INERTIA-GRAVITY WAVES

4.1. Continuous Equations

Inertia—gravity waves on af-plane are described by the linearized shallow-water equ
tions (e.g., [7])

otu — fov +goxh =0
v+ fou+gdyh=0 (2)
dh + H(@xu + dyv) = 0,

where fg is the Coriolis parameter (assumed constant) guiglthe gravity acceleration.
Assuming plane waves of the form

(U, v, h) = (Uo, Vo, Ho) €*=eb, 3)
Equation (2) becomes

—iwUg — foVp +ikgHy =0
—iwVo+ foUg+ilgHo =0 4)
—iwHg +iH (kUp + Vo) = 0,

which leads to the well-known dispersion relationship

2
(%) = 1422 +1?), (5)

0

whereir = /gH/ fq is the Rossby radius of deformation.

4.2. Discrete Dispersion Relationship

The semi-discretized system analogous to system (2) is

U — foSo(v) + 98y (h) =0
ov + foSo(u) + gS;(h) =0 (6)
oh+H [S)L(J(U) + S;(v)} =0,

which becomes, with the plane wave approximation (3),

—iwUo — foVoZo(k, 1) + gHoZ'(k,1) =0
—ioVo + foUoZo(k, 1) + gHZ(k,1) = 0 (7)
—iwHo+ H[UoT (k1) + Vo7 (k,1)] = 0.

This leads to the discrete dispersion relationship

2
(%) = T8k, D) = 22 [T (K D>+ T (kD2 . (8)

Note that this relationship reduces to the exact relationship (5) in the limit case of per



FINITE DIFFERENCE SCHEMES FOR OCEAN WAVES, | 247

discrete schemes, since in that case the TF of the interpolation operator is the con
function 1, and the TF of the derivativesxrandy are respectivelyk andil .
The relationship (8) can be expanded for each grid using Table lIl:

2
A: (‘:) = 1-22[T2(K) + T2()]

2
B: (?) = 1-22[T2,(0TEM) + T2, TEW)]

2
C: (i)) = TERTEN) — 22 [TH(K) + TEo(0)] ©

2
D: <?> = TEOTE(M) — R2[T2RTED) + TER TE(D)]

2
w
E: <?) =1-22[TE,(K + T
Note that the valid phase space in the case of the E grid is different from those for the ¢

grids (see Fig. 2).

4.3. Application to Explicit and Compact Schemes

We compared the discrete dispersion relationships (9) to the exact continuous relatior
(5) for the three different families of schemes listed in Table I. The corresponding cur
are displayed in Figs. 3 and 4 for each type of grid, both in a resolédi=€ 2) and in an
under-resolvedy(/d = 0.25) case. They represent the relative frequency &t — w) /w
for wavelengths greater thamd 2Such a comparison was already performed for E2S t
several authors; e.g., [5, 11]. They demonstrated that the A and D grids are not suit
for representing these waves because the numerical modes create “null spaces” ef
(Numerical frequency systematically decreases to 1 or even 0 at gkihis= (0, = /d)
or (7r/d, 0).) In contrast, the B and C grids are suitable for representing these waves; tt
grid is more accurate than the C grid in the resolved case {) and less accurate in the
under-resolved case (< d).

Given the expressions in (9), itis clear that the better the TFs of the schemes the bette
approximation oto (and hence of the phase velocity/k, w/1]). Therefore, the approxi-
mation ofw should be improved with the order of the schemes. Figures 3 and 4 illustr
exactly this behavior. The use of C4S and C6S systematically improves the accuracy o
numerical frequency, often in a quite spectacular way. The fact that the C grid gives the
results in the resolved case, while it is the B grid in the under-resolved case, remains \
for the compact schemes. However, the domain of accuracy is very much enlarged
C4S or C6S in comparison to E2S, and both B and C grids are probably good choices
those compact schemes, whatever the grid resolution. Note also that the suitability o
grids (and in particular the null spaces effects in the A and D grids) remains unchange

This investigation can be complemented by computing the discrete group veloci
(dw/0k, dw/dl), as done, forexample, by Song and Tang [10] and Haidvogel and Beckm:
[8] for E2S. As a matter of fact, numerical effects (in particular spurious modes) can h
a negative impact on the group velocity which can take locally very false values or e
the wrong sign. It has been shown, for example, that the C grid gives unreasonable g
velocity in the under-resolved case, even for very small wave numbers. The errorsin g
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E25 . C48 C6S
A
B
C
D ’ :

FIG. 3. Inertia—gravity waves: rms error anas a function okd/= andld/x for A to E grids and for the
three families of schemes (d = 2). Contour values are 10, 20, 30, 40, and 50% (from white to black). Due t
the symmetry of the problem, only the upper right quadrant is shown.

velocity amplitudeg|cy|™™ — |cg])/Icy| are shown in Figs. 5 and 6, as well as error vector
when the numerical group velocity departs from the exact analytical one by more tl
30°. We can observe behavior similar to that in the dispersion analysis, i.e., a very ¢
improvement of the accuracy of the numerical approximations when compact scheme:
used, in terms both of amplitude and of direction of the group velocity. In particular, bott
and C grids lead to rather good results, the B grid being, however, still better than the C
in the under-resolved case. Note also, as previously mentioned, that the compact sch
do not remove the grid-dependent numerical modes.
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E2S C45 C6S

FIG. 4. Same as Fig. 3, for/d = 0.25. Contour values are 5, 10, 15, 20, and 25%.

5. ROSSBY WAVES

5.1. Continuous Equations
The equations for Rossby waves in the linearizedépthne approximation are (e.g., [7])
atUQ - fova - ﬁyvg - 0 (10)
dvg + foUa + Byug = 0
athg + H (axua + ayva) = 0.
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T

FIG. 5. Group velocity amplitude rms error corresponding to Fig. 3. Contour values are 20, 40, 60, 80,
100%. Error vectors are plotted when the angle between exact and discrete group velocities is greater than

The subscriptg anda denote the geostrophic and ageostrophic components. The Cori
parameter depends linearly gn f = fo + By, with f; andg constant. Assuming plane-
wave solutions of the form (note thdy, Vg, andHg are constant, whiléJ, andV, must

depend ory)

ug(Xs y: t) Ug

vg(X, Yy, 1) Vg .

ua(x, y,t) | = Ua(y) el(kx+ly—wt)’ (11)
va(X, ¥, ) Va(Y)

hg(xv yrt) Hg
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E25

E
FIG. 6. Same as Fig. 5, for/d = 0.25.
system (10) becomes
foVg —ikgHg = 0
foUg +ilgHg =0
—iwUg — foVa — ByVg =0 (12)
—iwVy + foUa + ByUg =0
—iwHg + H(ikUy +ilVa 4+ 9y Va) = 0.
Hence, after elimination, the dispersion relationship is
w —12k

B 1+ r2kZ+12) (13)
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5.2. Discrete Dispersion Relationship

The semi-discretized system analogous to system (10) is

foSo(vg) — 98y (hg) =0 (14a)
foSo(ug) + 95y (hg) =0 (14b)
dUg — foSo(va) — BYSo(vg) = 0 (14c)
dvg + foSo(Ua) + BySo(ug) =0 (14d)
dkhg + H[S) (Ua) + Sy (va)] = 0. (14e)

Making the assumption (11) of a discrete plane-wave solution, (14a) and (14b) becom

g IykD 9 T'k.D

9= T oy 0 M Vo=t T o (19
while (14c) and (14d) give expressions §(u,) andSo(va):
— i Tu(k I) v (kx+ly—wt)
So(Ug) = f02 { Tk D + BYTy (K, I)}eI (16a)
g T ( ) u i (kx+ly—owt)
Hence, applying schen®® to (14€) gives
3k So(hg) + H[So 0 8 (Ua) + Sp 0 Sy (va)| =0. (17)

Notice thatSp, commutes withS)! and Sy due to the particular structure of the corre-
sponding matrices (symmetric Toeplitz, i.e., constant coefficient on each diagonal) and
S(ye®tly=ety — Rk, 1) + yT (k, )] ®+Hy-«O (R being defined by (1) at the end of
Section 3). Then introducing (16a) and (16b), (17) becomes after a little algebra

Tak DRK, 1) — T (k, RY(K, )

— 1 2
=D g [Tk e + Ty k1]

(18)

We can of course verify that the exact dispersion relationship (13) can be retrieve
the limit case of perfect discrete operators, since in that @adel), 7" (k, 1), Ty”(k, D,
RYK, D, andR;(k, I) are respectively equal to ik, il, 0, and 1.

This relationship (18) can be developed using Table IV for each type of grid:

_z TR0

w
A: — 1
B 1—22[T2(K) + T2(D)] (192)
B @ _ ;27000 200 [ToO)Ry2() — Ta() Ro()] (19b)
C B 1-22[TERTE0) + TEM T,(K) ]
o To(K) T1/2(K) To(1) Ry 2(1)
C: —=ix? 19
B ' TERTEN) — A2 [THa(k) + T2,(0)] (19¢)
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_ 1,2 0T ToM[To)Rub) — T2 ) Ro()]

w

D: — 19d
B TERTED) — A2 [T2R0TED + TEWTZD)] (19d)
® . T12(K)Ryj2(l)

E: Z =i 19
8= T [T2,00 + 2,0 (1%)

5.3. Application to Explicit and Compact Schemes

As for inertia—gravity waves, we plotted for each type of grid and each family of schen
the relative frequency error (Figs. 7 and 8) and the group velocity error (Figs. 9 and 10)..
prisingly, unlike the previous results concerning inertia—gravity waves, the approximati

E25 C45 C6S

FIG. 7. Same as Fig. 3, but for Rossby waves. Contour values are 10, 20, 30, 40, and 50%.
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E2S C4S C6S

E S ss 4r a8 as A as  ar ar L L R R T TR T T T T T T TR T T

FIG. 8. Same as Fig. 7, for/d = 0.25.

are not systematically improved when the order of the schemes increases. Itis evenr
clear that the use of C6S often leads to poorer results than with C4S, especially in
under-resolved case.

This can be easily explained by the form of the discrete relationship (18), which invol
not only the TFST of the schemes but also the first-order H:8Ve have plotted these first-
order TFs on Fig. 11, and it is striking to see that the qualitiRafystematically decreases
with the order of the schemes, especially for high wave numbers. The only excepti
are thatRy, is better for C4S than for E2S for all wave numbers and ®Rats better
for C4S than for E2S for short and intermediate wave numbers. Thus the changes ir
approximation of the frequency and the group velocity that occur when the order of
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FIG. 9. Same as Fig. 5, but for Rossby waves.

schemes is increased result in most cases from a compromise between imfrauilg
making R worse. Moreover the Rossby wave frequency appears as a ratio, and impro
both the numerator and the denominator of (18) will not necessarily improve the ratio its

Globally, the approximations are better for C4S than for E2S. This is particularly cls
for the C grid, which does not involvB, or Ry, and for the D grid. For the B grid, the
performance with C4S remains globally unchanged with regard to E2S, except that
group velocity error decreases and becomes more isotropic with C4S in the under-rest
case. On the other hand, the use of C6S often leads to poorer results than with C4S, n
for intermediate and large wave numbers. Thus the C4S family is probably the best ch
for representing Rossby waves.



A
B
C s
D
E T S e e W a e R T T
FIG. 10. Same as Fig. 9, for/d = 0.25.
2 15
15 c B
1 8 05
as A °
D 0.5
05 -1
4 . . , ) . ) s . . .
o oS 1 15 2 25 3 35 ° 05 1 15 2 25 3

FIG. 11. First-order transfer functions of exact and approximate operators described in Table IR feft:
E2S (A), C4S (B), C6S (C), and exact interpolation (D). Rigritfor E2S (A), C4S (B), C6S (C)R,,, for E2S
(D), C4sS (E), C6S (F), and exact derivation (G).
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6. CONCLUSION

We have derived a general approach for expressing the discrete dispersion relation
corresponding to inertia—gravity and Rossby waves on a computation grid, independe
the finite difference schemes. These relationships only involve the transfer functions o
schemes.

We have used this approach to investigate the interest of two families of compact sche
with regard to the conventional explicit second-order schemes. For inertia—gravity wa
the quality of the approximation of the dispersion relationship increases with the orde
the schemes. The general patterns of the frequency and the group velocity remain ider
but with an increased accuracy. B and C grids are still the best choices for representing 1
waves whatever the family of schemes, but the domains of accuracy corresponding t
grids are very much enlarged when C4S or C6S are used rather than E2S. Note, how
that the use of compact schemes does not prevent the existence of numerical modes.

Concerning Rossby waves, the dispersion relationship involves not only the zero-o
TFs but also the first-order TFs, the accuracies of which globally decrease with the o
of the schemes. For that reason, C6S is less appropriate than C4S. However the use c
leads to clear improvement with regard to E2S in nearly all cases. In particular, it impro
greatly the performance of the widely used C grid in the resolved case, which was on
the main failures of E2S.

In summary, the family of schemes C4S appears to be a good compromise for represe
inertia—gravity and Rossby waves in ocean models. The present study should be follc
by an evaluation of the performance of these schemes in representing the other impc
class of ocean waves, namely the coastal trapped Kelvin waves, and more generally i
context of a full ocean general circulation model, which will be the second part of this wo
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